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Abstract According to cognitive load theory, instruc-
tions can impose three types of cognitive load on the
learner: intrinsic load, extraneous load, and germane
load. Proper measurement of the different types of
cognitive load can help us understand why the effec-
tiveness and efficiency of learning environments may
differ as a function of instructional formats and learner
characteristics. In this article, we present a ten-item
instrument for the measurement of the three types of
cognitive load. Principal component analysis on data
from a lecture in statistics for PhD students (n = 56)
in psychology and health sciences revealed a three-
component solution, consistent with the types of load
that the different items were intended to measure. This
solution was confirmed by a confirmatory factor analy-
sis of data from three lectures in statistics for different
cohorts of bachelor students in the social and health
sciences (ns = 171, 136, and 148), and received further
support from a randomized experiment with university
freshmen in the health sciences (n = 58).
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According to cognitive load theory (Sweller, 2010; Sweller,
Van Merriënboer, & Paas, 1998; Van Merriënboer & Swel-
ler, 2005), instruction can impose three types of cognitive
load (CL) on a learner’s cognitive system: task complexity
and the learner’s prior knowledge determine the intrinsic
load (IL), instructional features that are not beneficial for
learning contribute to extraneous load (EL), and instruction-
al features that are beneficial for learning contribute to
germane load (GL). IL should be optimized in instructional
design by selecting learning tasks that match learners’
prior knowledge (Kalyuga, 2009), whereas EL should
be minimized to reduce ineffective load (Kalyuga &
Hanham, 2011; Paas, Renkl, & Sweller, 2003) and to
allow learners to engage in activities imposing GL (Van
Merriënboer & Sweller, 2005).

The extent to which instructional features contribute to
EL or GL may depend on the individual learner and the
extent to which the individual learner experiences IL. For
example, less knowledgeable learners may learn better from
worked examples (i.e., worked example effect; Cooper &
Sweller, 1987; Paas & Van Merriënboer, 1994; Sweller &
Cooper, 1985) or from completing a partially solved prob-
lem (i.e., a problem completion effect; Paas, 1992; Van
Merriënboer, 1990) than from autonomous problem-
solving. More knowledgeable learners benefit optimally
from autonomous problem-solving (i.e., expertise reversal
effect; Kalyuga, Ayres, Chandler, & Sweller, 2003;
Kalyuga, Chandler, Tuovinen, & Sweller, 2001). The infor-
mation presented in worked examples is redundant for more
knowledgeable learners who have the cognitive schemata to
solve the problem without instructional guidance, and
processing redundant information leads to EL (i.e., a
redundancy effect; Chandler & Sweller, 1991). Also,
when instructions are presented in such a way that
learners need to split their attention between two or
more mutually referring information sources they are
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likely to experience higher EL (i.e., split-attention ef-
fect; Sweller, Chandler, Tierney, & Cooper, 1990).

When IL is optimal and EL is low, learners can engage in
knowledge elaboration processes (Kalyuga, 2009) like self-
explanation (Atkinson, Renkl, & Merrill, 2003; Berthold &
Renkl, 2009) and argumentation (Fischer, 2002; Knipfer,
Mayr, Zahn, Schwan, & Hesse, 2009) that impose GL and
facilitate learning.

Being able to properly measure the different types of CL
would help educational researchers and instructional designers
to better understand why learning outcomes attained with in-
structional formats may differ between formats or between
learners. If IL differs between learners who are given the same
instructions, the difference in IL provides us with information on
the learners’ level of expertise and—if measured repeatedly—
how that changes over time. Meanwhile, when instructions are
varied—for example in experimental studies—such measure-
ments can help us gain a better understanding of instructional
effects for learners with similar or distinct levels of expertise.
Thus far, however, only a few attempts have been made
to develop instruments for measuring these different
types of cognitive load (Cierniak, Scheiter, & Gerjets,
2009; DeLeeuw & Mayer, 2008; Eysink et al., 2009).

The measurement of CL, IL, EL, and GL

Subjective rating scales like Paas’s (1992) nine-point mental
effort rating scale have been used intensively (for reviews,
see Paas, Tuovinen, Tabbers, & Van Gerven, 2003; Van Gog
& Paas, 2008) and have been identified as reliable and valid
estimators of overall CL (Ayres, 2006; Paas, Ayres, &
Pachman, 2008; Paas, Tuovinen, et al., 2003; Paas,
Van Merriënboer, & Adam, 1994). From the reviews
by Paas, Tuovinen, et al. and Van Gog and Paas, it
also becomes clear that in many studies task difficulty
rather than mental effort is used as an estimator of CL.
Next to measures of overall CL attempts have been
made to measure the different types of CL separately.
Ayres, for instance, presented a rating scale for the
measurement of IL, and other researchers have used
rating scales for measuring IL, EL, and GL separately
(e.g., Eysink et al., 2009). To measure EL, Cierniak et
al. (2009) asked learners to rate on a six-point scale
how difficult it was to learn with the material, and to
measure GL, they adopted Salomon’s (1984) question of
how much learners concentrated during learning.

Generally, the fact that different scales, varying in both
number of categories and labels, are used is a problem,
especially because some of these scales have not been
validated. Moreover, whether overall CL or (one of) the
types of CL is measured, in most cases one Likert item is
used, and the number of categories in the item typically

varies (see also Van Gog & Paas, 2008) and can be five
(e.g., Camp, Paas, Rikers, & Van Merriënboer, 2001;
Salden, Paas, Broers, & Van Merriënboer, 2004), six
(e.g., Cierniak et al., 2009), seven (e.g., Ayres, 2006),
or nine (e.g., Eysink et al., 2009; Paas, 1992). Although
load data are typically assumed to be measured at
interval level (i.e., metric), by using less than seven
categories one may be measuring at ordinal level of
measurement rather than at interval level of measure-
ment. Furthermore, when referring to very specific in-
structional features to measure EL or GL, there may be
a conceptual problem, because the expertise reversal
effect shows that a particular instructional feature may
be associated with GL (i.e., enhancing learning out-
comes) for one learner and with EL (i.e., hindering
learning outcomes) for another learner (Kalyuga et al.,
2003). An alternative approach to the formulation of
questions for EL and GL might solve this problem.
Furthermore, the measurement could become more pre-
cise when using multiple items for each of the separate
types of CL with a scale that is different from the
scales used in previous research. It is not entirely clear
to what extent workload and cognitive load refer to the
same concept across settings, but the NASA-TLX is an
example of an instrument that assesses work load on
five 7-point scales. Increments of high, medium, and
low estimates for each point result in 21 gradations on
the scales (Hart & Staveland, 1988; Hilbert & Renkl,
2009; Zumbach & Mohraz, 2008).

A new instrument for the measurement of IL, EL, and GL

In this study, a new instrument for the measurement of IL, EL,
and GL in complex knowledge domains was developed. The
data for the present article were collected in four lectures and
in a randomized experiment in statistics. Statistics is an im-
portant subject in many disciplines, jobs, study programs, and
every-day situations. In this domain, abstract concepts are
hierarchically organized and typically have little or no mean-
ing outside the domain. Not only do learners need to learn
formulas and how to apply them correctly, they also need to
develop knowledge of key concepts and definitions, and have
to learn to understand how statistical concepts are interrelated
(Huberty, Dresden, & Bak, 1993). Although the latter requires
intensive training, knowledge of key concepts and definitions
and proficiency with basic formulas can be developed at an
early stage (Leppink, Broers, Imbos, Van der Vleuten, &
Berger, 2011, 2012a, b). Therefore, asking learners to rate
difficulty or complexity of formulas, concepts, and definitions
may be feasible at an early stage, whereas asking them to rate
complexity of relationships between various concepts may
not, because they may not yet be able to perceive any of these
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relationships. With this in mind, the items displayed in Ap-
pendix 1 were developed.

Items 2 and 9 refer to formulas, whereas Items 1, 3, 7, 8,
and 10 refer to concepts, definitions, or just the topics
covered. Although Item 8 directly refers to understanding
of statistics, of course the term “statistics” can be replaced
by the term representing another complex knowledge do-
main if data are to be collected in, for example, mathemat-
ics, programming, physics, economics, or biology.

The ten items had been subjected to an online pilot study
at a Belgian university (teaching in Dutch), involving 100
first year bachelor students in psychology, and 67 master
students in psychology.

The present set of studies

In a set of four studies, all carried out in the same Dutch
university, the performance of the new instrument was ex-
amined. In a first study (henceforth, Study I), the instrument
was administered in a lecture in statistics for 56 PhD stu-
dents in psychology and health sciences, and Hypotheses
1–3 were tested using principal component analysis:

Hypothesis 1. Items 1, 2, and 3 all deal with complexity
of the subject matter itself and are therefore expected to
load on the factor of IL;
Hypothesis 2. Items 4, 5, and 6 all deal with negative
characteristics of instructions and explanations and are
therefore expected to load on the factor of EL;
Hypothesis 3. Items 7, 8, 9, and 10 all deal with the
extent to which instructions and explanations contribute
to learning and are therefore expected to load on the
factor of GL.

In a second study (henceforth, Study II), we administered
a questionnaire comprising these ten items and the afore-
mentioned scales by Paas (1992) for CL, Ayres (2006) for
IL, Cierniak et al. (2009) for EL, and Salomon (1984) for
GL in a lecture in statistics for 171 second-year bachelor
students in psychology, to test the first three and the follow-
ing four hypotheses (i.e., Hypotheses 1–7) using confirma-
tory factor analysis:

Hypothesis 4. Ayres’s (2006) scale for IL loads on IL
but not on EL or GL;

Hypothesis 5. Cierniak et al.’s (2009) scale for EL loads
on EL but not on IL or GL;
Hypothesis 6. Salomon’s (1984) scale for GL loads on
GL but not on IL or EL;
Hypothesis 7. Paas’s (1992) scale for CL loads on IL,
EL, and GL.

Hypotheses 4–7 received no support from the data in
Study II. Ayres’s (2006) scale for IL had a lower loading

on IL than Items 1, 2, and 3, and it had a significant cross-
loading on EL. Cierniak et al.’s (2009) scale for EL and
Salomon’s (1984) scale for GL diverged from the other
items in the instrument, and Paas’s (1992) scale for CL has
relatively weak loadings on all three factors. Therefore, only
Hypotheses 1–3 were tested using confirmatory factor anal-
ysis in a third study (henceforth, Study III). The data for this
analysis were collected in a lecture in statistics for 136 third-
year bachelor students in psychology, and in a lecture in
statistics for 148 first-year bachelor students in health sci-
ences. As Studies I, II, and III together provided support for
Hypotheses 1–3, a three-factor approach for IL, EL, and GL
was adopted in a fourth study (henceforth: Study IV).

In Study IV, a randomized experiment was conducted to
examine the effects of experimental treatment and prior
knowledge on CL, IL, EL, and GL, and learning outcomes.
In this experiment, a total of 58 novice learners studied a
problem either in a familiar format (textual explanation) and
subsequently in an unfamiliar format (formula; n = 29) or in
an unfamiliar format (formula) and subsequently in a famil-
iar format (textual explanation; n = 29). Studies by
Reisslein, Atkinson, Seeling, and Reisslein (2006) and
Van Gog, Kester, and Paas (2011) have demonstrated
that example-problem pairs are more effective for novi-
ces’ learning than problem–example pairs. Even though
both conditions receive the same tasks, the order mat-
ters, presumably because studying an example first
induces lower EL and higher GL, allowing for schema
building. That schema can subsequently be used when
solving the problem. When solving a problem first,
there is very high EL and little learning. In line with
these findings, we expected that learners who studied
the problem in a familiar (textual) format first would
demonstrate better learning outcomes (because they
could use what they had learned from the text to
understand the formula) and respond with lower levels
of EL and higher levels of GL. Further, we expected
learners with more prior knowledge to demonstrate
better learning outcomes and respond with lower levels
of IL than less knowledgeable learners. Thus, Hypoth-
eses 8–12 were tested in a randomized experiment:

Hypothesis 8. Learners who have more prior knowledge
experience lower IL than learners who have less prior
knowledge;
Hypothesis 9. Learners who have more prior knowledge
demonstrate better learning outcomes than learners who
have less prior knowledge;
Hypothesis 10. Studying a problem first in a familiar
format and subsequently in an unfamiliar format enhan-
ces learning outcomes more than studying the same
problem first in an unfamiliar format and subsequently
in a familiar format;
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Hypothesis 11. Studying a problem first in a familiar
format and subsequently in an unfamiliar format impo-
ses less EL on a learner than studying the same problem
first in an unfamiliar format and subsequently in a
familiar format;
Hypothesis 12. Studying a problem first in a familiar
format and subsequently in an unfamiliar format impo-
ses more GL on a learner than studying the same
problem first in an unfamiliar format and subsequently
in a familiar format.

In the following discussion, methods and results are dis-
cussed for each of the studies separately. Next, findings and
limitations are discussed for each of the studies, and impli-
cations for future research are discussed.

Study I: Exploratory analysis

Method

A total of 56 PhD students in the social and health sciences,
who attended a lecture on multiple linear regression analysis
and analysis of variance, completed the questionnaire. To
avoid potential confounding from specific item-order
effects, the items presented in Appendix 1 were counter-
balanced in three orders: order A (n = 19), Items 1, 7, 4, 2, 8,
5, 3, 9, 6, and 10; order B (n = 20), Items 6, 10, 9, 3, 5, 8, 2,
7, 1, and 4; and order C (n = 17), Items 9, 3, 6, 8, 2, 4, 10, 5,
7, and 1. The forms were put in randomized order, so that
people sitting next to each other were not necessarily
responding to the same item at the same time. Although it
was also part of the written instruction on the questionnaire
that students received, 2 min of oral instruction was provid-
ed at the beginning of the lecture to emphasize that each of
the items in the questionnaire referred to the lecture that
students were going to attend. All students completed the
questionnaire on paper at the very end of the lecture and
returned it right away. The lecture lasted 120 min and
students had a break of about 15 min somewhere halfway.
This procedure was the same in the lectures in Study II and
III.

Hypotheses 1–3 were tested using principal component
analysis. Principal component analysis is a type of explor-
atory factor analysis, in that loadings from all items on all
components are explored.

Results

Although the sample size of this lecture was rather small for
a ten-item instrument, the distributional properties of the
data allowed for this type of factor analysis [no outliers or
extreme skewness or kurtosis, as well as sufficient interitem
correlation; KMO = .692, Bartlett’s χ2(45) = 228, p < .001].

In case of this type of small sample, principal component
analysis is preferred to principal factor analysis because it is
less dependent on assumptions (e.g., normally distributed
residuals are assumed in the latter).

Oblique (i.e., Oblimin) rotation was performed to take the
correlational nature of the components into account (orthog-
onal rotation assumes that the factors are uncorrelated). If
the components underlying the ten items are as hypothe-
sized—IL, EL, and GL—correlation between components is
to be expected. For the knowledgeable learner, IL may be
low and the instructional features that contribute to EL and
GL, respectively may be different from the instructional
features that contribute to EL and GL for less knowledge-
able learners. Learners who experience extremely high IL
and/or high EL may not be able or willing to engage in GL
activities. Using oblique rotation in principal component
analysis, the correlation between each pair of components
is estimated and taken into account in the components
solution. Means (and standard deviations, SD), skewness,
kurtosis, and component loadings are presented in Table 1.
No outliers were detected.

Figure 1 shows a component loading plot. The compo-
nent loadings are in line with Hypotheses 1–3, and no cross-
loadings above .40 are present. Although the absence of
cross-loadings above .40 is a positive sign, given the limited
sample size of n = 56, the component loadings reported in
Table 1 only provide a preliminary indication of what the
component solution may be. In Table 2, we present the
correlations between the three components.

Reliability analysis for the three components revealed
Cronbach’s alpha values of .81 for Items 1, 2, and 3
(expected to measure IL); .75 for Items 4, 5, and 6 (expected
to measure EL); and .82 for Items 7, 8, 9, and 10 (expected
to measure GL).

Study II: Confirmatory analysis

Method

Data were collected in a lecture for 171 second-year bach-
elor students in psychology on one-way and two-way anal-
ysis of variance. We justified a different cohort of students
for this second study, because both lectures covered topics at
a comparable level of difficulty. The students from both
cohorts had limited knowledge of the topics covered, and
therefore the lectures were of a rather introductory level.
Furthermore, if a three-factor structure underlies the items in
an instrument, one would expect that three-factor structure
to hold across cohorts and potentially across settings.

To test Hypotheses 4–7, we added four items to the ten
items presented in Appendix 1 that were introduced previ-
ously in this article: Paas’s (1992) scale, which is assumed
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to be an estimator of CL; a nine-point version of Ayres’s
(2006) six-point rating scale for IL; a nine-point version of
Cierniak et al.’s (2009) seven-point rating scale for EL; and
a nine-point version of the seven-point rating scale for GL
used by Cierniak et al., who adopted it from Salomon
(1984). These four items, presented in Appendix 2, formed
the first four items of the questionnaire.

The item order for the ten new items was the same as
order C in Study I. The reason that nine-point scales were
used for each of these four items is to ease the standardiza-
tion and interpretation of outcomes in the confirmatory
factor analysis. If these items measure what they have been
expected to measure, using a nine-point scale should cause
no harm to the measurement. For example, higher EL

should still be reflected in higher ratings on the nine-point
version of Cierniak et al.’s (2009) seven-point rating scale
for EL.

As in the principal component analysis on the data
obtained in Study I, in the confirmatory factor analysis on
the data in Study II, the correlation between each pair of
factors was estimated and taken into account in the factor
solution.

Results

In Table 3, we present means (and SD), skewness, and
kurtosis, as well as squared multiple correlations (R2) of
each of the items administered in Study II. The R2 is an
indicator of item reliability and should preferably be .25 or
higher.

The R2 values reported in Table 3 and the factor loadings
presented in Table 4 indicate that Cierniak et al.’s (2009)
scales for EL and GL diverge from the other items in the
instrument.

In addition, Paas’s (1992) scale for CL has relatively
weak loadings on all three factors, maybe due to cap-
turing overall load, whereas all other items in the ques-
tionnaire focus on a specific type of load. Although the
loading of .61 for Ayres’s (2006) scale for IL could be
acceptable from the loading point of view, the

Fig. 1 Component loading plot for Study I

Table 2 Component correlations in Study I

Component Pair Correlation

Component 1–Component 2 .05

Component 1–Component 3 –.31

Component 2–Component 3 .27

Table 1 Means (and SD),
skewness, kurtosis, and compo-
nent loadings in Study I

Component/Item Mean (SD) Skewness Kurtosis Component Loading

C1 C2 C3

First Component

Item 7 7.21 (1.19) –0.77 0.36 .92 .01 .08

Item 8 7.04 (1.68) –1.65 4.73 .84 .01 .01

Item 9 6.82 (1.42) –0.03 –0.49 .83 –.02 .01

Item 10 6.84 (1.56) –0.98 1.82 .65 .02 –.08

Second Component

Item 1 5.54 (2.03) –0.73 0.06 –.07 .76 .12

Item 2 5.41 (2.47) –0.55 –0.93 .05 .84 .06

Item 3 5.75 (2.23) –0.59 –0.21 .05 .94 –.15

Third Component

Item 4 1.89 (1.36) 0.38 –0.47 .03 –.05 .91

Item 5 1.73 (1.26) –0.04 –1.02 .04 –.03 .88

Item 6 1.88 (1.44) 1.02 2.28 –.11 .14 .63
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modification indices reveal a significant cross-loading
on EL, indicating that it may diverge from the other
items that are expected to measure IL. In line with this,
both its factor loading and its R2 are lower than the
factor loadings and R2 of the other items that load on
IL and have no significant cross-loadings.

In the present study design, we cannot answer the ques-
tion why these measures diverge, or which of the measures
is a better measure of the different types of load, because the
instructional tasks used in our study varied extensively from
the prior studies. However, given that the ten recently de-
veloped items appear to form a three-factor solution from
which the other four items diverge from, we continued by
testing a model with only the ten recently developed items.
The three factors are significantly correlated: the correlation
between IL and EL is .41 (p < .001), the correlation between
IL and GL is .33 (p < .001), and the correlation between EL
and GL is –.19 (p = .025). Two additional residual covari-
ance paths were included to the model—namely, between
Item 7 and Item 9 and between Item 9 and Item 10. Item 9
asks students to rate the extent to which the activity contrib-
uted to their understanding of formulas, whereas Items 7 and
10 refer more to verbal information. These residual covari-
ance paths were included, because the three lecturers involved
in Study II and Study III were different in terms of emphasis
on verbal explanation versus formulaic explanation.

Table 5 contains factor loadings of Items 1–10 in Study II
and the correlations of the two residual covariance paths.
The two residual covariance paths have small coefficients,
and one of them was not statistically significant. We find
χ2(30) = 62.36, p < .001, CFI = .965, TLI = .947,
RMSEA = .079. The modification indices do not pro-
vide any meaningful suggestions for additional paths.
Although the CFI and TLI appear to indicate that we
have a good fitting model, the RMSEA is on the edge
(i.e., above .08 is inadequate, values around .06 are

Table 3 Means (and SD), skewness, and kurtosis in Study II

Factor/Item Mean (SD) Skewness Kurtosis R2

Nine-Point Versions of Existing Scales (1–9)

Paas 5.64 (1.40) –0.57 0.09 .25

Ayres 5.15 (1.37) –0.24 1.15 .38

Cierniak et al. 4.35 (1.36) 0.29 0.42 .18

Salomon 6.02 (1.66) –0.64 –0.07 .23

New Items (0–10)

Item 1 4.94 (2.06) –0.26 –0.26 .50

Item 2 5.08 (2.21) –0.28 –0.47 .82

Item 3 5.11 (2.19) –0.28 –0.60 .71

Item 4 2.13 (1.90) 1.17 1.44 .86

Item 5 2.16 (1.59) 0.61 0.17 .56

Item 6 2.56 (2.23) 1.09 0.97 .43

Item 7 6.60 (1.65) –0.85 1.77 .68

Item 8 6.37 (1.63) –0.80 0.95 .76

Item 9 6.57 (1.68) –1.01 1.24 .60

Item 10 6.30 (1.67) –1.11 2.04 .63

Table 4 Factor loadings for each of the 14 items administered in Study
II

Factor/Item Factor Loading SE t Value p Value

First Factor: IL

Paas .26 .097 2.70 .007

Ayres .62 .053 11.67 <.001

Item 1 .71 .044 16.17 <.001

Item 2 .90 .024 36.94 <.001

Item 3 .84 .029 28.92 <.001

Second Factor: EL

Paas .00 .094 0.02 .99

Cierniak et al. .42 .069 6.10 <.001

Item 4 .93 .031 29.75 <.001

Item 5 .75 .040 18.60 <.001

Item 6 .66 .050 13.25 <.001

Third Factor: GL

Paas .35 .083 4.25 <.001

Salomon .48 .063 7.62 <.001

Item 7 .83 .031 26.88 <.001

Item 8 .87 .026 33.72 <.001

Item 9 .77 .037 21.04 <.001

Item 10 .79 .034 23.14 <.001

Table 5 Factor loadings for each of the ten recently developed items
administered in Study II

Factor/Item Factor Loading SE t Value p Value

First Factor: IL

Item 1 .68 .046 14.83 <.001

Item 2 .93 .027 34.40 <.001

Item 3 .84 .032 26.07 <.001

First Factor: EL

Item 4 .95 .034 27.79 <.001

Item 5 .74 .042 17.54 <.001

Item 6 .65 .051 12.72 <.001

First Factor: GL

Item 7 .79 .036 21.62 <.001

Item 8 .91 .028 32.53 <.001

Item 9 .73 .046 15.84 <.001

Item 10 .80 .035 22.69 <.001

Residual Covariance

Item 7, Item 9 .29a .090 3.19 <.001

Item 9, Item 10 –.03a .10 –0.35 .73

a This is a correlation, not a factor loading.
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acceptable, and values of .05 and lower are preferred).
We decided to test this model on the new data collected
in two lectures in Study III.

Study III: Cross-validation

Method

The instrument was administered in a lecture for 136 third-
year bachelor students in psychology on logistic regression
and in a lecture for 148 first-year bachelor students in health
sciences on null hypothesis significance testing. In the lec-
ture on logistic regression, the items were asked in the order
presented in Appendix 1. In the lecture on null hypothesis
significance testing, the items presented in Appendix 1 were
presented in three orders: the order in Appendix 1 (n = 50),
as well as order D (n = 49)—Items 1, 5, 10, 2, 6, 3, 7, 8, 4,
and 9—and order E (n = 49)—Items 5, 9, 1, 3, 10, 4, 6, 8, 2,
and 7 (i.e., orders D and E were used because the orders
were different from orders A, B, and C used previously).
The forms were put in randomized order, so that people
sitting next to each other were not necessarily answering
the same questions.

We are aware that the cohorts in Study III differ from
each other in terms of knowledge of statistics and that both
cohorts differ from the cohorts in Study I and Study II. All
four lectures in the three studies, however, covered content
that had not been taught to these cohorts before and were
therefore of a rather introductory level. Furthermore, ad-
ministering an instrument in different cohorts potential-
ly increases variability of responses and enables the
stability of a factor solution. If a factor solution is
consistent across datasets, this is an indicator of the
stability of the solution.

Results

Table 6 shows the factor loadings of the ten items and the
correlations of the two residual covariance paths in the
lecture on logistic regression.

The residual covariance that had been statistically signif-
icant in Study II was not statistically significant in the
lecture on logistic regression, whereas the other residual
covariance had a moderate coefficient and was statistically
significant.

The three factors were significantly correlated: The cor-
relation between IL and EL was .61 (p < .001), the correla-
tion between IL and GL was –.36 (p < .001), and the
correlation between EL and GL was –.56 (p < .001). The
analysis yielded χ2(30) = 35.036, p = .24, CFI = .995,
TLI = .992, RMSEA = .035. Table 7 contains the factor
loadings of the ten items and the correlations of the two

residual covariance paths in the lecture on null hypoth-
esis significance testing.

Both residual covariance paths were close to zero and not
statistically significant in the lecture on null hypothesis
significance testing. Furthermore, only IL and EL were
significantly correlated: The correlation between IL and
EL was .25 (p = .007), the correlation between IL and GL

Table 6 Factor loadings for each of the ten recently developed items
administered in the lecture on logistic regression

Factor/Item Factor Loading SE t Value p Value

First Factor: IL

Item 1 .82 .035 23.27 <.001

Item 2 .81 .035 23.17 <.001

Item 3 .92 .026 35.74 <.001

First Factor: EL

Item 4 .83 .044 18.95 <.001

Item 5 .69 .056 12.43 <.001

Item 6 .77 .049 15.88 <.001

First Factor: GL

Item 7 .86 .027 31.17 <.001

Item 8 .99 .017 57.82 <.001

Item 9 .78 .035 22.16 <.001

Item 10 .79 .035 22.90 <.001

Residual Covariance

Item 7, Item 9 .10a .083 1.15 .25

Item 9, Item 10 .43a .075 5.74 <.001

a This is a correlation, not a factor loading.

Table 7 Factor loadings for each of the ten recently developed items
administered in the lecture on null hypothesis significance testing

Factor/Item Factor Loading SE t Value p Value

First Factor: IL

Item 1 .71 .052 13.63 <.001

Item 2 .83 .046 18.09 <.001

Item 3 .78 .048 16.26 <.001

First Factor: EL

Item 4 .88 .038 23.14 <.001

Item 5 .76 .045 17.10 <.001

Item 6 .78 .044 17.74 <.001

First Factor: GL

Item 7 .89 .026 33.95 <.001

Item 8 .89 .026 34.07 <.001

Item 9 .76 .047 15.99 <.001

Item 10 .82 .032 25.39 <.001

Residual Covariance

Item 7, Item 9 .03a .149 0.18 .86

Item 9, Item 10 –.06a .119 –0.49 .63

a This is a correlation, not a factor loading.
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was .04 (p = .65), and the correlation between EL and GL
was –.11 (p = .24). These results yielded χ2(30) = 30.298,
p = .45, CFI = 1.000, TLI = .999, RMSEA = .008.
Table 8 shows the R2 values for each of the ten items
in the final model and Cronbach’s alpha values per
scale for the lectures in Studies II and III.

The lowest R2 value was .42 in Study II (Item 6, which
appears to be an indicator of EL), which indicates that every
item has a sufficient amount of variance in common with
other items in the questionnaire.

Study IV: Experiment

Method

A total of 58 university freshmen who were about to enter a
course in basic inferential statistics participated in a random-
ized experiment, in which two groups studied a problem on
conditional and joint probabilities in counterbalanced order.
Prior knowledge of conditional and joint probabilities was
assessed prior to the study, and immediately after the study
a posttest on conditional and joint probabilities was
administered.

The students had a stake in the experiment, as the content
of the experiment would form the content of the first week
in their upcoming statistics course. The students were in-
formed that they would participate in a short experiment and
that this experiment would be followed by a one-hour lec-
ture in which the content covered in the experiment—con-
ditional and joint probabilities—would be explained.

Participation in the experiment lasted 45 min, and the sub-
sequent lecture lasted 60 min.

In the lecture, conditional and joint probabilities as well
as frequent misconceptions on these topics were discussed
by a statistics teacher. The lecture was interactive; not only
did the lecturer explain the concepts of conditional and joint
probability, the lecturer also stimulated students in the audi-
ence who knew the answer to the problem presented on the
screen to explain their reasoning to their peers. After the
lecture, students were also debriefed about the setup of the
experiment. Finally, lecture slides as well as correct calcu-
lations and answers to all the items in the prior knowledge
test and posttest were provided to the students, and students
were allowed to stay in touch via email with the lecturer to
ask questions on the content or on the provided materials.

From an ethical perspective, we wanted to avoid potential
disadvantage for individual students due to them having
participated in a specific treatment order condition. Through
an additional lecture for all participating students together,
we expected to compensate for unequal learning outcomes
resulting from the experiment. From a motivational perspec-
tive, we expected that providing students with feedback on
their performance in (as well as after) such a lecture would
stimulate students to take the experiment seriously, which
could reduce noise in their responses to the various items.

At the very start of the meeting, all students completed
the prior knowledge test on conditional and joint probabil-
ities that is presented in Appendix 3.

To reduce guessing behavior, multiple choice items were
avoided and open-answer questions were used. Students had
to calculate a conditional probability in the first question and
a joint probability in the second question. As expected, both
questions were of a sufficient difficulty level in that they did
not lead to extremely low correct response proportions: the
first question yielded fifteen correct responses (about 26 %
of the sample) and the second question yielded 31 correct
responses (about 53 % of the sample). At the end of the prior
knowledge test, students completed the same questionnaire
as presented in Appendix 1.

Next, students were assigned randomly to either of two
treatment order conditions. In both conditions, students
were presented the same problem on conditional and joint
probabilities in two modes: in an explanation of six lines
text, and in formula notation. In treatment order condition
TF, students first studied the text explanation (T) and then
the formula explanation (F), and in condition FT, the order
was the other way around. The two presentation formats—
text and formula—are presented in Appendix 4.

Students reported, as expected, that they were not famil-
iar with the specific notation of conditional probabilities like
P(man | psychology). In both treatment conditions, students
completed the same questionnaire as they completed after
the prior knowledge test and after each study format. The

Table 8 R2 values for each of the ten items in the final model, along
with Cronbach’s alpha values, per scale in Study II and Study III

R2 Values of Item and Cronbach’s Alphas of Scales

Study III
Scale / Item Study II Logistic Regression Hypothesis Testing

IL .85a .88a .81a

Item 1 .46 .68 .51

Item 2 .86 .66 .69

Item 3 .70 .85 .61

EL .80a .81a .85a

Item 4 .90 .69 .78

Item 5 .55 .48 .58

Item 6 .42 .60 .61

GL .89a .93a .91a

Item 7 .62 .73 .80

Item 8 .82 .99 .80

Item 9 .53 .61 .58

Item 10 .64 .63 .68

a These are Cronbach’s alpha values.
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two formats were not presented simultaneously; students
received the two formats in counterbalanced order, and
which format they received first depended on the treatment
order condition.

To assess learning outcomes, a five-item posttest on
conditional and joint probabilities was administered. The
items were similar to the questions in the prior knowledge
test and resembled the problem studied in the two formats,
only more difficult to avoid potential ceiling effects for
some items. Correct response rate on an item varied from
sixteen respondents (about 31 % of the sample) to 32
respondents (about 55 % of the sample). The average num-
ber of correctly responded items was 1.97, and Cronbach’s
alpha of the five-item scale was .79. Having completed the
five-item posttest, students completed the same question-
naire as they completed after the prior knowledge test and
after the two study formats. Thus, we had four measure-
ments for all the CL-related items per participating student.
Completed questionnaires were checked for missing
responses right away, which confirmed that all participants
responded to all the items in the questionnaire. Likewise, on
the prior knowledge test and posttest, no missing responses
were found.

Results

The reliability analysis revealed that Items 1, 2, and 3 form a
homogeneous scale, and when we added Ayres’s (2006)
item for IL, the Cronbach’s alpha of the scale remained
more or less the same. Furthermore, Items 4, 5, and 6 form
a scale for which Cronbach’s alpha decreased considerably
in three of the four measurements when Cierniak et al.’s
(2009) item for EL was added. Similarly, Items 7, 8, 9, and
10 form a homogeneous scale for which Cronbach’s alpha
decreased considerably when Salomon’s (1984) item for GL
was added. Finally, Paas’s (1992) item for CL appears to be
correlated to the items that aim to measure IL only, and
adding Paas’s item to the scale with Items 1, 2, 3, and
Ayres’s item for IL did not lead to remarkable changes in
Cronbach’s alpha. These findings are presented in Table 9

for the four time points (i.e., after prior knowledge test,
after text format, after formula format, after posttest),
respectively.

Table 10 shows the means and standard deviations for
each of the three scales of Items 1–10 and for the four 9-point
scales at each of the four time points, per treatment order
condition (i.e., TF and FT).

The somewhat lower Cronbach’s alpha value for the scale
of Items 4, 5, and 6 after the prior knowledge test and after
the posttest may be a consequence of restriction of range
effects. After both treatment formats, there is more variation
in scores on this scale and Cronbach’s alpha values of the
scale are within the expected range. As expected, the aver-
age score on this scale was highest after the formula format
in treatment condition FT, where students were confronted
with the formula format before they received the text format.

Linear contrast analysis for the effect of prior knowledge
(number of items correct: 0, 1, or 2) on posttest perfor-
mance (0–5) revealed a linear effect, F(1, 24) = 8.973,
p < .01, η2 = .134, and the deviation was not statisti-
cally significant, F(1, 7) = 2.76, p = .10, η2 = .041. We
therefore included prior knowledge as a linear predictor
in our subsequent regression analysis for posttest per-
formance. None of the CL-related scores obtained after
the prior knowledge test, after the text format, and after
the formula format contributed significantly to posttest
performance. In Table 11, we present the results of an
analysis of covariance (ANCOVA) model for posttest
performance using prior knowledge score, treatment or-
der, and the average on the scale of Items 7, 8, 9, 10—
the four items that are supposed to measure GL—as
predictors after the posttest. Of the other CL-related
scales after the posttest, none contributed significantly
to posttest performance, which makes sense because
only GL activities should contribute to learning and
result in better learning outcomes.

In line with Hypothesis 9, a higher prior knowledge score
was a statistically significant predictor for higher posttest
performance. Furthermore, posttest performance was non-
significantly worse in the TF condition, meaning we have

Table 9 Cronbach’s alphas of
three scales in Study IV Scale Prior Text Formula Posttest

Items 1, 2, 3 .86 .87 .91 .89

Items 1, 2, 3 + Ayres (2006) .86 .89 .89 .89

Items 1, 2, 3 + Ayres + Paas (1992) .86 .89 .89 .89

Items 4, 5, 6 .71 .85 .87 .63

Items 4, 5, 6 + Cierniak et al. (2009) .54 .80 .82 .67

Items 4, 5, 6 + Cierniak et al. + Paas .50 .76 .78 .64

Items 7, 8, 9, 10 .94 .97 .94 .96

Items 7, 8, 9, 10 + Salomon (1984) .83 .89 .85 .87

Items 7, 8, 9, 10 + Salomon + Paas .74 .84 .80 .81
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no support for Hypothesis 10. Finally, there is limited
evidence that higher scores on the scale of Items 7, 8,
9, and 10—intended to measure GL—predict higher
posttest performance (η2 = .064). It is possible that
students were still learning to a more or lesser extent
while completing the posttest.

For the effects of prior knowledge and experimental
treatment on IL, EL, and GL, as measured by the scales of
Items 1–10, mixed linear models with Toeplitz as covari-
ance structure provided the best solution for analysis.

Table 12 shows the outcomes of this model for average
IL (i.e., Items 1, 2, and 3). In line with Hypothesis 8, the
model presented in Table 12 indicates that more prior
knowledge predicts lower IL. Furthermore, presenting the
formula format before the text format appears to lower IL
experienced when studying the text presentation but not
when studying the formula presentation.

Table 13 presents the outcomes of the model for average
EL (i.e., Items 4, 5, and 6). Confirming Hypothesis 11, the
model presented in Table 13 indicates that when the formula
format is presented before the text format, EL is elevated
significantly for the formula format.

Finally, Table 14 reveals the outcomes of the model for
average GL (i.e., Items 7, 8, 9, and 10). The model presented
in Table 14 indicates that the text format imposes signifi-
cantly more GL when presented after the formula format.
On the one hand, one may argue that the formula format
confronted students with difficulties, leading them to invest
more GL activities when the textual explanation was pro-
vided. On the other hand, however, no significantly elevated
posttest performance was detected.

Discussion

In this section, findings and limitations are discussed for the
four studies, and implications for future research are
discussed.

Exploratory analysis

Although the sample size was small for a ten-item instru-
ment, the principal component analysis in Study I provided
preliminary support for Hypotheses 1, 2, and 3. Also, as one
would expect, the components that are expected to be EL
and GL are negatively correlated. Furthermore, the compo-
nents that are expected to measure IL and GL have a
correlation around zero. The relationship between IL and
GL may not be linear. Extremely low as well as extremely
high levels of IL may lead to limited GL activity. On the one
hand, if a learning task is too easy for a student, the

Table 10 Mean (and SD) for each of the three scales of Items 1–10
and for the four 9-point scales, per treatment order condition in Study
IV

Scale/Item Text Formula (TF) Formula Text (FT)

After Prior Knowledge

Items 1, 2, 3 3.17 (2.21) 4.59 (1.96)

Items 4, 5, 6 1.56 (1.47) 2.06 (1.80)

Items 7, 8, 9, 10 3.49 (2.33) 3.54 (1.84)

Paas (1992) 5.52 (1.55) 5.52 (1.41)

Ayres (2006) 5.48 (2.03) 6.10 (1.47)

Cierniak et al. (2009) 5.62 (1.80) 5.31 (1.63)

Salomon (1984) 6.07 (1.79) 6.34 (1.47)

After Text Format

Items 1, 2, 3 5.05 (2.48) 4.48 (2.14)

Items 4, 5, 6 3.26 (2.07) 3.54 (2.50)

Items 7, 8, 9, 10 3.52 (2.58) 4.83 (1.77)

Paas 6.31 (1.54) 5.76 (1.33)

Ayres 6.28 (1.75) 5.72 (1.41)

Cierniak et al. 6.10 (1.63) 5.34 (1.45)

Salomon 6.76 (1.38) 6.48 (1.41)

After Formula Format

Items 1, 2, 3 4.31 (2.41) 5.09 (1.75)

Items 4, 5, 6 2.24 (2.21) 4.68 (2.40)

Items 7, 8, 9, 10 4.46 (2.38) 4.31 (1.61)

Paas 5.59 (1.76) 5.83 (1.26)

Ayres 5.59 (1.57) 5.76 (1.19)

Cierniak et al. 5.14 (1.58) 5.62 (1.43)

Salomon 6.07 (1.60) 6.21 (1.40)

After Posttest

Items 1, 2, 3 4.97 (2.28) 5.22 (2.13)

Items 4, 5, 6 2.14 (1.32) 2.41 (1.91)

Items 7, 8, 9, 10 4.40 (2.31) 4.71 (1.66)

Paas 6.76 (1.30) 6.66 (1.14)

Ayres 6.38 (1.66) 6.52 (1.18)

Cierniak et al. 6.03 (1.52) 5.76 (1.46)

Salomon 7.28 (1.33) 7.00 (1.23)

Table 11 ANCOVA model for
posttest performance, using as
covariates prior knowledge score,
treatment order, and average score
on the scale of Items 7–10 after
the posttest in Study IV

Order coding: 0 = TF, 1 = FT.

Effect Coefficient Standard Error t(55) p Value

Intercept 0.63 0.59 1.06 .29

Prior knowledge score 0.96 0.33 2.87 <.01

Order –0.61 0.42 –1.44 .15

Average, Items 7–10 0.19 0.11 1.80 .08
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explanations and instructions in the task may not contribute
to actual learning on the part of that student. On the other
hand, if a learning task is too complex for a particular
student, cognitive capacity for GL activity may be very
limited. Finally, the components that are expected to mea-
sure IL and EL have a moderately positive correlation.

Confirmatory support for a three-factor model

The fact that the items presented in Appendix 1 have differ-
ent factor loadings than the previously developed scales for
measuring the different types separately is interesting, but
also hard to explain on the basis of the present data. More-
over, since no learning outcomes were measured after the
lectures, these studies do not provide insight in how the
various scales are related to learning outcomes. For this
reason, we conducted the randomized experiment in Study
IV (1) to examine how different scales vary in two different
experimental conditions that we expected to lead to differ-
ential effects on IL, EL, and GL, and (2) to examine how the
various scales are related to learning outcomes. Together,
the results of Study II and Study III provide support for the
three-component solution found in Study I.

The high item reliabilities (i.e., R2 values), high Cron-
bach’s alpha values, and high fit indices (i.e., CFI and TLI)
across lectures in studies I to III, and the low RMSEA in two
of the three confirmatory factor analyses support our expec-
tation that a three-factorial structure underlies Items 1–10. It
has been suggested that the concept of GL should be rede-
fined as referring to actual working memory resources

devoted to dealing with IL rather than EL (Kalyuga, 2011;
Sweller, 2010). Kalyuga suggested that “the dual intrin-
sic/extraneous framework is sufficient and non-
redundant and makes boundaries of the theory transpar-
ent” (2011, p. 1). Contrary to EL and IL, GL “was
added to the cognitive framework based on theoretical
considerations rather than on specific empirical results
that could not be explained without this concept”
(Kalyuga, 2011, p. 1). The present findings suggest,
however, that such a two-factor framework may not be
sufficient; the three-factor solution is consistent across
lectures.

On the use of different cohorts in Studies I, II, and III

We justified the use of different cohorts of students in the
four lectures studied. If a factor solution is consistent across
these varied datasets, this is an indicator of the stability of
the solution. The reason that we chose two lectures instead
of one lecture in Study III was to have two independent
lectures additional to the lecture Study II to test the hypoth-
esized three-factor model. However, the use of different
cohorts and different lecturers may introduce confounds,
which may partly explain why the correlation between fac-
tor pairs and the residual covariances are somewhat different
correlations across lectures.

Cohort-related factors may form one source of confound-
ing. PhD students—and to some extent also advanced bach-
elor students—are, more than university freshmen, aware of
the importance of statistics in their later work.

Table 12 Mixed linear model
for IL in Study IV

Order coding: 0 = TF, 1 = FT.

Effect Coefficient Standard Error t Value p Value

Intercept 4.63 0.40 10.96 <.01

Prior knowledge score –1.20 0.29 –4.09 <.01

Order 0.90 0.39 2.30 .03

Text (dummy) 1.57 0.40 3.90 <.01

Formula (dummy) 0.82 0.31 2.64 <.01

Posttest (dummy) 1.21 0.34 3.59 <.01

Order × Text –1.37 0.50 –2.72 <.01

Table 13 Mixed linear model
for EL in Study IV

Order coding: 0 = TF, 1 = FT.

Effect Coefficient Standard Error t Value p Value

Intercept 2.07 0.41 5.07 <.01

Prior knowledge score –0.57 0.30 –1.87 .07

Order 0.39 0.41 0.93 .36

Text (dummy) 1.59 0.31 5.18 <.01

Formula (dummy) 0.61 0.39 1.58 .12

Posttest (dummy) 0.47 0.25 1.88 .07

Order × Formula 2.07 0.51 4.09 <.01
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Teaching style may form a second source of confound-
ing: Whereas some lecturers emphasize conceptual under-
standing, others emphasize formulas and computations. In a
lecture in which the focus is on conceptual understanding
rather than on formulas, Item 9 may be a somewhat weaker
indicator of GL. If the focus in a lecture is on formulas and
conceptual understanding is of minor importance, Item 10
may be a somewhat weaker indicator of GL.

A third potential source of confounding in these studies
was the subject matter. Whereas the lectures in Study I and
Study II covered similar topics, the lectures in Study III
were on different topics, which could have affected the
measurement of the different types of load.

Future validation studies should administer this instru-
ment in different lectures of a number of courses given by
the same lecturers and for the same cohorts of students,
repeatedly, to estimate the magnitude of student-related,
teacher-related, and subject-related factors in item response
and to examine the stability of the three-factor model across
time.

Additional support for the three-factor solution
in the experiment

The experiment in Study IV provides evidence for the
validity of the three-factor solution underlying Items 1–10.
First of all, as expected, higher prior knowledge predicted
lower IL throughout the study (all four time points) and
higher posttest performance. More knowledgeable learners
have more elaborated knowledge structures in their long-
term memory and are therefore expected to experience low-
er IL due to novelty of elements and element interactivity in
a task (Kalyuga, 2011; Van Merriënboer & Sweller, 2005).

Secondly, as expected, EL during learning was higher
when a problem to be studied was presented first in a format
learners were not familiar with (the formula format); how-
ever, learners appeared to engage more in GL activities if
the problem was subsequently presented in a format they
were familiar with (the text format). Also, the known format
was reported to impose less IL when presented after the
unknown format. Although the students who received the
unknown (formula) format first complained that it was

difficult and responded to the questionnaire with higher
rates of EL after the unknown format, they subsequently
responded with lower rates of IL and higher rates of GL
after the text format. These findings are difficult to explain,
and suggest that order effects may influence the IL that is
experienced by a learner. A limitation of this study was that
only one posttest was administered after studying both for-
mats, so we cannot determine to what extent each of the
formats separately contributed to posttest performance. Fu-
ture studies should include a test after each format instead of
only after both formats. This may also provide more insight
into why, in the present experiment, no negative effects of
EL on learning performance were found. It is possible that
higher EL experienced among students who received the
formula format first compensated by increased investment
in GL activities in the subsequent study in the text format.

Finally, there is limited evidence that higher scores on GL
after the posttest predict higher posttest performance. New
experiments, using larger sample sizes, are needed to further
investigate this finding.

Question wording effects

More experimentation is also needed to examine across a
wide range of learning tasks and contexts the correlations
between the items presented in Appendix 2 and the three
factors that underlie Items 1–10. Specific wording effects
may play a role. For example, Paas’s (1992) item for CL
directly asks how much effort learners invest in an activity.
This “investment” term is not used in any of the other items
included. In addition, the question “how difficult it is to
learn with particular material” could refer to EL for some
learners and to IL for other learners. New studies should
examine qualitatively how exactly learners interpret these
items across a range of tasks.

Implications and suggestions for future research

For the present set of studies, the statistics knowledge do-
main was chosen because this is a complex knowledge
domain that is important in many professions and academic
curricula, and potentially even in everyday contexts. As

Table 14 Mixed linear model
for GL in Study IV

Order coding: 0 = TF, 1 = FT.

Effect Coefficient Standard Error t Value p Value

Intercept 3.33 0.42 7.87 <.01

Prior knowledge score 0.20 0.32 0.62 .54

Order 0.07 0.42 0.16 .87

Text (dummy) 0.03 0.38 0.09 .93

Formula (dummy) 0.87 0.30 2.87 <.01

Posttest (dummy) 1.04 0.32 3.28 <.01

Order × Text 1.25 0.47 2.63 .01
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with the items developed by Paas (1992), Ayres (2006),
Cierniak et al. (2009), and Salomon (1984), however, the
intended applicability of Items 1–10 is not restricted to a
particular knowledge domain. With minor adjustments
(e.g., “statistics” in some items), these items could be
used in research in other complex knowledge domains.

Finally, studies combining the subjective measures pre-
sented in this article—including the four items developed by
Paas (1992), Ayres (2006), Cierniak et al. (2009), and
Salomon (1984)—and biological measures such as eye-
tracking (Holmqvist et al., 2011; Van Gog & Scheiter,
2010) may lead to new insights on convergence between
biological and subjective measures and on what these dif-
ferent types of measures are measuring. If both biological
and subjective measures measure the same constructs—in
this context, IL, EL, and GL, and potentially even overall
CL as a function of these three types of CL—one would
expect high and positive correlations between these meas-
ures across educational settings. If such correlations are
found, that may imply for measurement that using either
of two types is potentially sufficient in educational
studies. If other types of correlations are found, this
opens doors for new research on why and under what
circumstances the different types of measures diverge.

Appendix 1: A ten-item questionnaire for themeasurement
of IL (Items 1, 2, and 3), EL (Items 4, 5, and 6),
and GL (Items 7, 8, 9, and 10)

All of the following questions refer to the activity (lecture,
class, discussion session, skills training or study session)
that just finished. Please respond to each of the questions on
the following scale (0 meaning not at all the case and 10
meaning completely the case).

0 1 2 3 4 5 6 7 8 9 10

[1] The topic/topics covered in the activity was/were very
complex. (il1 in Fig. 1)

[2] The activity covered formulas that I perceived as very
complex. (il2 in Fig. 1)

[3] The activity covered concepts and definitions that I
perceived as very complex. (il3 in Fig. 1)

[4] The instructions and/or explanations during the activity
were very unclear. (el1 in Fig. 1)

[5] The instructions and/or explanations were, in terms of
learning, very ineffective. (el2 in Fig. 1)

[6] The instructions and/or explanations were full of un-
clear language. (el3 in Fig. 1)

[7] The activity really enhanced my understanding of the
topic(s) covered. (gl1 in Fig. 1)

[8] The activity really enhanced my knowledge and under-
standing of statistics. (gl2 in Fig. 1)

[9] The activity really enhanced my understanding of the
formulas covered. (gl3 in Fig. 1)

[10] The activity really enhanced my understanding of
concepts and definitions. (gl4 in Fig. 1)

Appendix 2: Four additional items for data collection
in Study II—Item 1, expected to measure CL (Paas,
1992); Item 2, expected to measure IL (Ayres, 2006);
Item 3, expected to measure EL (Cierniak et al., 2009);
and Item 4, expected to measure GL (Salomon, 1984)

[1] Please choose the category (1, 2, 3, 4, 5, 6, 7, 8, or 9)
that applies to you: In the lecture that just finished I
invested

1. very, very low mental effort / 2. very low mental
effort / 3. low mental effort / 4. rather low mental effort /
5. neither low nor high mental effort / 6. rather high
mental effort / 7. high mental effort/ 8. very high mental
effort / 9. very, very high mental effort

[2] Please choose the category (1, 2, 3, 4, 5, 6, 7, 8, or 9)
that applies to you: The lecture that just finished was

1. very, very easy / 2. very easy / 3. easy / 4. rather
easy / 5. neither easy nor difficult / 6. rather difficult /
7. difficult / 8. very difficult / 9. very, very difficult

[3] Please choose the category (1, 2, 3, 4, 5, 6, 7, 8, or 9)
that applies to you: To learn from the lecture was

1. very, very easy / 2. very easy / 3. easy / 4. rather
easy / 5. neither easy nor difficult / 6. rather difficult /
7. difficult / 8. very difficult / 9. very, very difficult

[4] Please choose the category (1, 2, 3, 4, 5, 6, 7, 8, or 9)
that applies to you: How much did you concentrate
during the lecture?

1. very, very little / 2. very little / 3. little / 4. rather
little / 5. neither little nor much / 6. rather much / 7.
much / 8. very much / 9. very, very much

Appendix 3: Prior knowledge test in Study IV

Question 1

Student population X. consists of 600 men and 400 women.
There are 200 chemistry students and of these 200 chemistry
students, 100 are women. We now draw one student. What
is the probability of a chemistry student, given that the
student is a man?

Question 2

Student population X. consists of 600 men and 400 women.
There are 300 business students and half of them are men. If
we draw at random one student from student population X.,
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what is the probability that the student happens to be a male
business student?

Appendix 4: Presentation formats (text and formula)
in Study IV

Text

If we draw at random 1 student from student population X,
the probability that the student is a man is 0.5, and the
probability that the student studies psychology is 0.2. The
probability that the student is a man, given that the student
studies psychology, is 0.3. From this follows that the prob-
ability that our student is a male psychology student is 0.2
times 0.3 and this is 0.06. The probability that our student
studies psychology, given that the student is a man, can now
be calculated by dividing the probability of a male psychol-
ogy student by the probability that the student is a man, or:
0.06 / 0.5 = 0.12.

Formula

If we draw at random 1 student from student population X:

P manð Þ ¼ 0:5
P psychologyð Þ ¼ 0:2
P man psychologyjð Þ ¼ 0:3
P man and psychologyð Þ ¼ P psychologyð Þ

�P man j psychologyð Þ
¼ 0:2� 0:3 ¼ 0:06

P psychology j manð Þ ¼ P man and psychologyð Þ=P manð Þ
¼ 0:06 0:5 ¼ 0:12=

:
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