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Abstract In a context-aware ubiquitous learning envi-

ronment, learning systems are aware of students’ locations

and learning status in the real world via the use of sensing

technologies which provide personalized guidance or sup-

port. In such a learning environment that guides students to

observe and learn from real-world targets, various physical

world constraints need to be taken into account when

planning learning paths for individuals. In this study, an

optimization problem is formulated by taking the relevance

of real-world learning targets and the environmental con-

straints into account when determining personalized

learning paths in the real world to maximize students’

learning efficacy. Moreover, a hyper-heuristic approach is

proposed to efficiently find quality learning paths for

individual students. To evaluate the performance of the

proposed approach, the teachers’ feedback was collected

and analyzed based on the learning activities conducted in

an elementary school natural science course; in addition,

the performances of the proposed algorithm and other

approaches were compared based on a set of test data.

Keywords Context awareness � Ubiquitous learning

(u-learning) � Genetic algorithm � Ubiquitous computing �
Hyper-heuristic

1 Background and motivation

In the past decade, researchers have applied mobile devices,

wireless networks and ubiquitous computing technologies

(e.g., sensing devices or sensor networks) to educational

settings. They have aimed to develop learning environments

that guide and support students’ learning in the real world

[19, 27]. With the help of these technologies, the students’

learning space is no longer limited to classrooms; moreover,

it is possible to provide personalized learning guidance to

individual students [15]. Such a technology-enhanced

learning approach that employs mobile, wireless communi-

cation and sensing technologies to support students’ learning

in real-world contexts has been called ‘‘context-aware

ubiquitous learning’’ or ‘‘contextual mobile learning’’ by

researchers [6, 12, 19]. Various applications have revealed

the success of this approach by situating students in well-

designed real-world contexts to observe, probe, and collect

data to investigate issues specified by teachers. For example,

Akkerman et al. [1] conducted a historical learning activity

based on a mobile game approach with GPS (Global Posi-

tioning System) and reported the benefits of such an

approach in terms of improving the students’ learning

motivation [1]. Recently, Chen and Huang [6] conducted a

context-aware ubiquitous learning activity in a museum with

RFID (Radio-frequency identification) and found that the

approach benefited the students with regard to improving

their learning achievement and attitudes [6]. Recently,

Hwang et al. [16] also reported the effectiveness of con-

ducting Mindtool-based in-field learning activities with

smartphones and QR-codes [16].

Researchers have further indicated that such a sensing

technology-enhanced mobile learning approach enables the

learning system to more actively guide students to learn in

the real world [19, 21]. On the other hand, several studies
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have pointed out the difficulty of arranging learning

activities for guiding students to learn the right thing in the

right place at the right time [10, 17]. Without a proper

learning guidance plan which takes the features of learning

contents and the parameters of real-world environments

into account, students’ learning performance could be

significantly affected when they are guided to learn from

the contexts that combine both real-world and digital-world

resources [20]. Therefore, it becomes an important and

challenging issue to propose effective and efficient meth-

ods of planning physical paths which guide individual

students to learn based on multiple criteria, including the

relationships between the associated concepts of the real-

world learning targets and the constraints of the real-world

environment.

Most of the previous studies on learning path optimi-

zation problems mainly focused on the provision of per-

sonalized learning paths in computer-based or web-based

learning environments, in which a learning path represents

a learning sequence for guiding the students to learn a set

of digital learning contents related to a learning task or

issue [8]. In such a path optimization problem, students’

knowledge levels, computer-based or web-based learning

behaviors and personal factors are usually the criteria to be

considered [7, 18, 30].

However, the constraints and factors to be taken into

account in a path optimization problem for learning in the

physical world are quite different. Previous studies have

indicated that in addition to the relationships between the

concepts or knowledge represented by the physical learn-

ing targets, the number of students is the key factor that

could significantly affect the students’ learning perfor-

mance, owing to the physical constraints of real-world

positions [11, 12, 34]. Researchers have further indicated

the importance of controlling the number of students in

individual physical positions to avoid affecting their

learning performance [10, 17, 35].

To cope with this problem, a learning guidance

approach based on a physical path optimization algorithm

is proposed for developing personalized context-aware

u-learning systems by taking the relevance of physical

learning targets and the number of students who visits the

same targets into consideration. The QR-code technology

is used to confirm the locations of individual students in the

real world, such that the learning system is able to guide

the students to learn following the optimized learning

paths.

2 Objectives and problem definition

Figure 1 shows a context-aware u-learning environment,

which is an ecology area for conducting in-field learning

activities for the natural science course in an elementary

Fig. 1 Real-world learning environment for conducting context-aware u-learning activities on a school campus
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school in Taiwan. There are many plants raised in this

ecology area. The u-learning system was developed with

JAVA Eclipse. In the field trip, students are equipped with

a 7-in. tablet computer; moreover, QR-codes are used so

that the mobile learning system can confirm the locations

of individual students. The students are asked to observe

the plants and complete the learning tasks specified by the

teachers using a mobile device with wireless communica-

tion facilities.

Figure 2 shows the structure of the context-aware

u-learning environment, which consists of a server for

executing the online learning system, a wireless network

for supporting interactions between the students and the

learning system and the real-world learning targets (e.g.,

Fig. 2 Structure of the context-

aware u-learning environment

Learning task: Observe the plant and identify 
its flower shape.

Text descriptions of each possible 
flower shape.
1. Ligulate : The corolla appears 
as a short, narrow tube below and 
is flattened above.
2. Tubular : The corolla forms a 
long-tube or cylinder and is 
slightly expanded above.
3. Bilabiate: The corolla  looks 
like upper and lower lips with a 
gaping open mouth.
4. Funnelform: The corolla looks 
like a horn with a narrow tube 
below gradually expanding into a 
funnel above.

Fig. 3 Interface of the learning target and task
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plants) with QR-code tags. During the in-field learning

activities, the students are guided by the learning system in

the real-world learning environment to complete a set of

specified learning tasks via observing the target plants and

identifying the features of the plants.

Figure 3 shows the interface of the u-learning system. It

guides students to find the learning targets following a

predetermined sequence by showing them the name and

appearance of the targets. When arriving at the location of

a learning target, students are asked to confirm their loca-

tion by taking a photo of the QR-code tag on the target.

After confirming that the code is consistent with the

learning target, the learning system starts to present ques-

tion-based learning tasks and supplementary materials to

the students.

The traditional in-field learning activity is conducted in

a paper-based fashion. In other words, the students receive

a learning item sheet and are requested to answer the

question items and compile their findings on the sheet

during the learning activity. Such a learning activity lacks

personalized guidance or support for the students’ obser-

vation of the real-world objects. Some students might

overlook the key features of the target objects or may not

be able to complete the mission simply owing to insuffi-

cient guidance. It is anticipated that this form of learning

activity suffers a number of disadvantages as described in

the following.

First, each target object has different concepts repre-

sented by key features. The students might fail to com-

prehend the relationships among those target objects if they

visit the target objects via an arbitrary learning path

without any guidance. The students are likely to be dis-

orientated in the learning process. Novak [26] indicated

that learning is a continuous process which adds new

information to the existing information repository [26]. If a

learner can be guided to connect new information with the

existing information, the learning process is called mean-

ingful learning. In the past decades, researchers have

addressed the importance of guiding students to learn in a

meaningful and effective way, that is, to assist the students

in learning new concepts based on relevant knowledge that

has already been established [2, 4].

Second, researchers have found that learning perfor-

mance is significantly deteriorated if too many people

attempt to visit or learn about the same target object

simultaneously [5, 11, 12, 25, 34]. This phenomenon is

commonly seen when conducting learning activities in

real-world environments such as museums, ecology gar-

dens, or classrooms. It is imperative to constrain the size of

the learner group attending the target object at the same

time. As the target objects might have different physical

characteristics and the location of the objects also imposes

certain space constraints, the size of the learner group

should be dependent on the learning targets. It is difficult

for the students to self-organize learner groups of appro-

priate size if they are not provided with guidance.

This study addresses the capacity-constrained personal-

ized learning path (CCPLP) problem in a context-aware

u-learning environment, wherein the students are guided to

observe the learning targets and complete their mission

with support from the learning system via mobile devices

(such as tablet PCs or smartphones), wireless communi-

cation, and sensor technology. Personalized support is

provided to assist the students in completing their learning

mission in the authentic learning environment. The time

allowed for visiting any learning target is the same, so that

the students who are observing different learning targets

can start to learn about the next learning target at the same

time. However, the maximal number of students simulta-

neously visiting one particular learning target should be no

more than a specified capacity limit in order to maintain

good quality learning.

The objective is to conduct the in-field learning activity

in a more effective and efficient way. Provided the rele-

vance degree for a student learning an object in immediate

succession of another object is known a priori, it is bene-

ficial to arrange a personal effective learning path for the

student to learn the objects in an appropriate sequence such

that the overall relevance degree gained is maximized.

Moreover, the learning paths of all the students result in

different learning groups visiting the objects. They should

be planned in an efficient way which considers the size

limit of the learning group for the objects, so that fewer

students will be deterred from attending the next learning

target. Under the assumptions and objectives noted, the

Table 1 Description of the notations used in the problem formulation

n Number of students attending this context-aware

u-learning course

m Number of learning targets

Lastk Number of time phases at the time when the k-th student

finishes observing the last learning target

N Maximal number of time phases for observing the

learning targets, N C m

t Time phase index on the learning path, 1 B t B N

Sk The kth student, 1 B k B n

Ai The ith learning target, 1 B i B m

R(Sk, Ai,

Aj)

Relevance degree perceived by the kth student for

learning target i in immediate succession of target j,

0 B R(Sk, Ai, Aj) B 1.0

L(Sk, j) Location of the jth learning target on the learning path

for the kth student

Num(Ai,

t)

Number of students located at the ith learning target in

the tth time phase

Capacityi Maximal allowed number of students for studying the ith

object simultaneously
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mathematical formulation for the CCPLP problem is pro-

posed as follows.

Minimize f ¼a

Pn

k¼1

Lastk

nm

0

B
B
@

1

C
C
A

þb
Xn

k¼1

Xm�1

j¼1

1�RðSk;LðSk;jþ1Þ;LðSk; jÞÞ½ �
n m�1ð Þ

 !

ð1Þ

Subject to

NumðAi; tÞ�Capacityi; 1� i�m; 1� t�N ð2Þ

The description for the used notations is given in

Table 1. The objective function (1) contains two minimi-

zation terms for achieving the best efficiency and effec-

tiveness of the in-field learning activity. The first term
Pn

k¼1 Lastk

nm

calculates the total number of time phases required by all

students to finish learning all of the objects, where the

denominator is used to normalize the value of this term to a

unit range [0, 1]. The second term

Xn

k¼1

Xm�1

j¼1

1� RðSk; LðSk; jþ 1Þ; LðSk; jÞÞ½ �
n m� 1ð Þ

computes the total amount of irrelevance between two

successive learning targets observed by any students in the

learning activity, where the denominator also normalizes

the term value within [0, 1]. Note that the relevance degree

is converted to the irrelevance degree by subtracting the

relevance value from one in order to fit the minimization

objective framework. The relevance degree of two suc-

cessive learning targets is asymmetrical and student-

dependent. In other words, the relevance degree may be

different when two successive learning targets on the

learning path are exchanged, and the relevance degree

between two successive learning targets may be different

for distinct students. The parameters a and b represent the

relative importance of the two objective terms, and we set

a ? b = 1.0. Moreover, the constraint formula (2) stipu-

lates that the number of students simultaneously observing

any learning target should be bounded by a pre-specified

capacity amount for the corresponding learning target.

Thus, the purpose of this problem formulation is to mini-

mize the average number of time phases consumed by any

student to finish the learning activity and to carefully

design personalized learning paths for individual students

to maximize the collective relevance, while respecting the

observer capacity constraint of the learning targets.

3 A hyper-heuristic approach to the CCPLP problem

The solution method to the CCPLP problem consists of two

parts. The first part determines the student-dependent and

asymmetric relevance degree between each pair of learning

targets, while the second part identifies the quality learning

paths for individual students based on the relevant infor-

mation and the capacity constraint.

3.1 Determining the relevance between learning targets

In this stage, the repertory grid method is employed to

assist the teachers and domain experts in determining the

relevance between each pair of learning targets. The rep-

ertory grid method originated from Kelly’s personal con-

struct theory [22], which aims to elicit and analyze

knowledge by identifying different concepts in a domain

and distinguishing among them. In a repertory grid, the

targets to be classified or identified are called ‘‘elements’’

and are placed in the columns on top of the grid. Experts

compare the elements and identify their traits; the positive

traits (e.g., ‘‘the leaf shape of the plant is long and thin’’)

are placed to the left, and the opposite traits (e.g., ‘‘the leaf

shape of the plant is round and thick’’) to the right. Each

pair of positive and opposite traits becomes a ‘‘construct’’

and is used to describe the characteristics of the elements.

In each cell in the grid, users are usually asked to fill in the

degree or tendency of each element for the construct from 1

to 5 where 1 refers to a positive trait, 2 signifies a partially

positive trait, 3 represents no tendency either way, 4 is a

partially opposite trait, and 5 means an opposite trait.

Table 2 shows a repertory grid with 18 elements that rep-

resent the plants on the school campus where the constructs

(i.e., the positive traits C1, C2, …, C23 and the opposite

traits C10, C20, …, C230) are the features for identifying and

distinguishing the plants.

After a repertory grid is developed, a relevance analysis

formula is then invoked to analyze the relevance between

the elements [9, 23]:

Relevance EA;EBð Þ ¼ 1

�
PN

i¼1 RG EA;Cið Þ � RG EB;Cið Þj j
K � 1

� 1

N
� 100%

In this formula, N represents the number of learning tar-

gets, K represents the maximum rating scale (K = 5 in this

study), and RG (EA, Ci) represents the rating for learning

target EA and construct Ci. Table 3 shows the degree of

relevance among the elements in Table 2 by applying the

formula, where the number in bold numbers indicate self-

relevance.
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Table 2 The repertory grid of the target plants

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18

C1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 C10

C2 5 5 5 5 5 5 5 5 5 1 1 1 1 1 5 5 5 5 C20

C3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 C30

C4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 C40

C5 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 C50

C6 5 5 5 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 C60

C7 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 C70

C8 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 C80

C9 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 5 5 5 C90

C10 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 C100

C11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 5 C110

C12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 C120

C13 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 C130

C14 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 C140

C15 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 C150

C16 5 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 C160

C17 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 C170

C18 5 5 5 5 1 5 5 5 5 2 1 2 5 4 5 2 5 5 C180

C19 5 5 5 5 5 1 2 1 5 2 5 5 5 5 1 5 1 5 C190

C20 5 5 5 5 5 5 2 5 1 5 5 2 1 5 5 5 5 5 C200

C21 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 2 5 5 C210

C22 5 5 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 5 C220

C23 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 5 5 C230

Table 3 Relevance analysis results

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18

E1 100 88 88 91 83 83 80 83 83 68 74 72 74 73 74 68 74 74

E2 88 100 98 88 79 79 77 79 79 65 71 68 71 70 71 65 71 71

E3 88 98 100 88 79 79 77 79 79 65 71 68 71 70 71 65 71 71

E4 91 88 88 100 83 83 80 83 83 68 74 72 74 73 74 68 74 83

E5 83 79 79 83 100 91 89 83 83 75 83 78 74 75 74 75 74 74

E6 83 79 79 83 91 100 96 91 83 75 74 72 74 73 83 68 83 74

E7 80 77 77 80 89 96 100 87 87 73 72 76 78 71 78 66 78 72

E8 83 79 79 83 83 91 87 100 83 75 74 72 74 73 83 68 83 74

E9 83 79 79 83 83 83 87 83 100 68 74 78 83 73 74 68 74 74

E10 68 65 65 68 75 75 73 75 68 100 92 90 86 78 75 707 75 68

E11 74 71 71 74 83 74 72 74 74 92 100 96 91 84 74 75 74 74

E12 72 68 68 72 78 72 76 72 78 90 96 100 96 82 72 73 72 72

E13 74 71 71 74 74 74 78 74 83 86 91 96 100 82 74 68 74 74

E14 73 70 70 73 75 73 71 73 73 78 84 82 82 100 73 76 73 73

E15 74 71 71 74 74 83 78 83 74 75 74 72 74 73 100 86 91 74

E16 68 65 65 68 75 68 66 68 68 70 75 73 68 76 86 100 77 68

E17 74 71 71 74 74 83 78 83 74 75 74 72 74 73 91 77 100 74

E18 74 71 71 83 74 74 72 74 74 68 74 72 74 73 74 68 74 100
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3.2 Determining the personalized optimal learning

paths

After determining the relevance between learning targets,

the optimal solution to the CCPLP problem based on the

mathematical model of Eqs. (1) and (2) can be obtained by

optimization approaches. In the following, a novel hyper-

heuristic optimization method is proposed for deriving the

optimal personalized learning paths.

3.2.1 Hyper-heuristic optimization framework

The hyper-heuristic framework [3, 13, 28, 29, 31–33] is a

conceptual method that solves an optimization problem by

selecting and combining lower-level heuristics (LLHs) to

create a more effective form of optimization method.

Figure 4 shows the architecture of the hyper-heuristic

framework which consists of two layers: the domain-

dependent layer and the domain-independent layer. The

domain-dependent layer has a repository of lower-level

heuristics (LLHs) which are designed according to the

characteristics (such as the objectives and the constraints)

of the addressed problem. The LLHs are primitive opera-

tions which can be applied to produce a new solution based

on a given trial solution. There usually already exist a

number of LLHs suited to the underlying problem. For

example, the 2-swap, shift, and inversion are widely used

LLHs for permutation-based combinatorial optimization

problems, such as the CCPLP problem. On the other hand,

the domain-independent layer contains the heuristic

selection (HS) and the move acceptance (MA) methods,

both of which can be implemented without knowing any

domain knowledge of the problem. The HS method selects

one or more LLH(s) from the repository based on the

performance statistics. A new solution is produced by

applying the selected LLH(s) to the current trial solution.

The MA method makes the decision about whether to

accept the new solution to replace the current trial solution.

The hyper-heuristic framework iteratively performs the

cycle of the HS and the MA methods until a stopping

criterion is reached. The hyper-heuristic is flexible because

new features can be augmented to HS and MA to make the

resulting optimization method more effective. Due to the

great success of evolutionary computation (EC), two well-

known EC approaches are employed, the genetic algorithm

(GA) [14] and simulated annealing (SA) [24], to implement

the HS and MA components, respectively.

3.2.2 Proposed lower-level heuristics

As noted, the 2-swap, shift, and inversion are widely used

LLHs for permutation-based combinatorial optimization

problems. In addition to the three LLHs relying on random

perturbations, another greedy LLH which operates in a

systematic procedure rather than in a random manner is

proposed. A solution (the learning paths of all the students)

Solution flow
Heuristics flow

Domain-dependent layer

LLHs Performance statistics of 
Individual LLHs

Trial solution x

2-swap, shift, 
inversion, greedy

HS
New solution x’Apply selected 

LLHs on x

MA
Accept: x = x’
Reject: x = x

Domain-independent layer
stop?

YesNo Output best 
solution

cycle

Fig. 4 Architecture of the

hyper-heuristic framework

Table 4 Example solution of the scheduled learning paths of 6

objects for 30 students

Time phase index

1 2 3 4 5 6 7 8 9

Student

index

1 1 X 2 X 3 4 5 6 X

2 2 3 X 4 X 1 X 6 5

: :

: :

29 5 X 4 2 1 X 3 X 6

30 2 3 X 6 5 4 X 1 X
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to the CCPLP problem can be represented by an

n 9 N matrix where n is the number of students and N is

the maximal number of time phases. Table 4 shows an

example solution for learning 6 objects by 30 students

within 9 time phase units. The ith row corresponds to the

personalized learning path arranged for the ith student. For

the elements contained in each row, the number indicates

the index of the learning object to which the student is

attending, and symbol X denotes that the corresponding

student has to wait at that time due to the capacity con-

straint. In order to produce a new solution, the LLHs used

will randomly choose a number of students to alter the

learning paths. Using the first student in Table 4 as an

example, two reference positions are determined randomly

for performing the LLHs, say, the 3rd and the 6th positions

are chosen as shown in Fig. 5a. The operation of the pro-

posed four LLHs is illustrated as follows.

The swap heuristic (denoted LLH-A) exchanges the

values on the two random positions, resulting in the new

learning path as seen in Fig. 5b. The shift heuristic

(denoted LLH-B) circularly moves the elements, starting

from the 3rd position and ending at the 6th position, to the

left in one position. The new learning path obtained for the

first student is shown in Fig. 5c. The inversion heuristic

(denoted LLH-C) reverses the order of the elements start-

ing from the 3rd position and ending at the 6th position.

Figure 5d shows the new learning path obtained by

applying LLH-C. In contrast to the previously noted three

LLHs which rely on randomness, the greedy heuristic

(denoted LLH-D) is performed in a systematic way. It

intends to shorten the learning path as much as possible.

For the learning path in Fig. 5a, the LLH-D heuristic swaps

the right-most number and the left-most symbol X in this

learning path if the resulting new learning path does not

incur a violation of capacity constraints. This LLH-D

heuristic is repeated until the learning path cannot be made

any shorter. Figure 5e shows the new learning path

obtained for the first student, and it is seen that the length

of the learning path is shortened by two time phase units

compared to the original path (note that the three X sym-

bols at the end of this path do not account for the length

because the student has finished learning all the target

objects within the first six time phases).

3.2.3 Employing GA as the HS method

In this paper, the HS process is conceived of as an opti-

mization task (selecting the best LLH(s) to perform) and

employs GA as the proposed HS method.

The GA encodes a possible combination of the LLHs by

a chromosome of genes. The crossover and mutation

operations are applied to the chromosomes to reproduce the

offspring (new combinations of the LLHs). The perfor-

mance of each offspring is evaluated by applying the

encoded LLHs to the current trial solution and thus obtains

a new solution. The objective value f (Eq. (1)) of the new

solution indicates the performance of the applied LLHs.

However, some LLH combinations may result in an

infeasible solution which violates the capacity constraint.

This problem is resolved by adding an amount of penalty to

the objective value of the infeasible solution, viz.

f  f þ
Xm

i¼1

XN

t¼1

max 0;NumðAi; tÞ � Capacityif g; ð3Þ

where the second term is a penalty measuring the overall

amount of the violation.

The performance statistics for each offspring is tallied in

the domain-dependent layer (see Fig. 4), and the natural

selection of GA chooses the fitter offspring based on per-

formance statistics to participate in the evolution of the

next generation. Hence, every GA generation completes a

cycle of the hyper-heuristic method. After undertaking a

sufficient number of generations, the GA has learned the

best LLH combination.

3.2.4 Employing SA as the MA method

The SA is applied as the preferred MA method in order to

achieve a balance between random and greedy searches

such that the hyper-heuristic is more likely to escape from

the trap of local optimal learning paths. The SA follows the

Metropolis criterion which accepts all improving solutions.

1 X 2 X 3 4 5 6 X

(a)

1 X 4 X 3 2 5 6 X 1 X X 3 4 2 5 6 X

(b) (c)

1 X 4 3 X 2 5 6 X 1 6 3 4 2 5 X X X
(d) (e)

Fig. 5 Illustrations of the four

proposed LLHs
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The worsening solutions are accepted according to a

probability following the Boltzmann distribution which

draws on two factors: a control temperature parameter

T and the worsening amount D in solution quality. The

temperature T is decreased by a ratio after every cycle of

the hyper-heuristic, and this process is called annealing

which makes the search to tend to accept arbitrary random

moves at the beginning and gradually transit to only

accepting improving moves at the end. The SA mechanism

increases the probability that the hyper-heuristic used finds

the global optimal learning path.

4 Evaluation and analysis

A pilot study was conducted in an elementary school natural

science course to test the performance of the u-learning sys-

tem. The participants were three teachers and 31 sixth graders.

Before the field trip, a 20-min briefing was given to the par-

ticipants to introduce the functions of the mobile device and

the u-learning system. Following that, the students were gui-

ded by the u-learning system in the field to observe 12 target

flowers, including Pentas lanceolata, Stachytarpheta ja-

maicensis, Lantana camara, Saluia splendens, Synedrella

nodiflora, Ixeris chinensis, Surinamcalliandra,Bidens pilosa,

Angelonia angustifolia, Torenia fournieri, Allamanda cath-

artica, and Bignonia chamberlaynii following the learning

sequence determined by the u-learning system. In the mean-

time, the three teachers were asked to observe the learning

behaviors of the students; in addition, they were asked to

experience the u-learning process in order to evaluate the

performance of the u-learning system. The total time for the

u-learning activity was 100 min. Following the experiment,

the teachers were interviewed and the performances of the

proposed algorithm and other approaches were compared

based on a set of test data.

4.1 Feedback from the teachers

In the first stage, three experienced teachers (coded TA,

TB, and TC) who had taught the natural science course for

more than 5 years were interviewed. The teachers were

asked to comment on the usefulness and quality of the

u-learning approach in comparison with the traditional in-

field learning from two aspects, that is, motivating students

to learn and improving learning efficiency.

• Motivating students to learn

All of the three teachers shared the same opinion that the

developed u-learning environment could promote the

learning motivation of the students. They were surprised that

the students seemed to be more involved in the learning

activity than they had expected them to be. TA stated that, ‘‘It

is obvious that the mobile device with wireless communi-

cation facilities can motivate the students since they are able

to access the online resources and interact with the learning

system during the field trip’’. TB indicated that, ‘‘The stu-

dents are happy and excited when using the mobile devices to

learn in the field. It is obvious that, in comparison with the

traditional in-field learning, the students show much higher

interest in observing the plants’’. TC stated that, ‘‘The

u-learning approach is impressive. I can see that the students

are happy and motivated to learn in the field. They like to use

the mobile devices to access supplementary materials via the

wireless network. They also like to collect data by taking

photos of the target plants’’.

• Improving learning efficiency

The three teachers all agreed that the context-aware

u-learning approach could benefit the students in terms of

improving their learning efficiency owing to the guidance

Table 5 Performance statistics for LLH-A (swap)

Problem

instance

Performance statistics

Mean SD Min Max Hit

ratio

(%)

CPU

time

#1 0.4058 0.0211 0.3659 0.4492 100 0.18

#2 0.4052 0.0096 0.3861 0.4208 100 0.49

#3 0.4414 0.0105 0.4238 0.4746 100 0.44

#4 0.4022 0.0075 0.3884 0.4197 100 1.27

#5 0.4334 0.0070 0.4190 0.4470 100 1.83

#6 0.4732 0.0058 0.4626 0.4851 100 3.29

#7 0.5639 0.0024 0.5586 0.5697 100 10.79

#8 0.6130 0.0013 0.6106 0.6155 100 22.16

#9 0.6257 0.0009 0.6238 0.6279 100 48.84

#10 0.6599 0.0008 0.6576 0.6611 100 109.51

Table 6 Performance statistics for LLH-B (shift)

Problem

instance

Performance statistics

Mean SD Min Max Hit ratio

(%)

CPU

time

#1 0.6194 0.0244 0.5587 0.6670 100 0.20

#2 0.6143 0.0146 0.5805 0.6419 100 0.53

#3 N/A N/A N/A N/A 0 0.48

#4 0.6617 0.0084 0.6423 0.6777 100 1.39

#5 0.7047 0.0076 0.6858 0.7203 96.67 1.96

#6 0.7049 0.0049 0.6925 0.7151 100 3.41

#7 0.7273 0.0029 0.7224 0.7343 100 10.86

#8 N/A N/A N/A N/A 0 22.84

#9 N/A N/A N/A N/A 0 48.79

#10 N/A N/A N/A N/A 0 108.35
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provided in the field. TA indicated that, ‘‘In my memory,

students always crowded around the same learning targets

in the traditional in-field learning, which might signifi-

cantly affect their learning performance. However, in this

learning activity, it is found that the students observed the

target plants following the guidance of the learning system.

It can be seen that their learning efficiency is improved’’.

TB also shared the same opinion that, ‘‘The guidance

provided by the u-learning system helps the students to

observe the plants without being affected by other students

during the field trip, which not only increases the students’

learning efficiency, but also improves their learning effi-

cacy’’. TC further indicated that, ‘‘The u-learning system

works like a personalized tutor for individual students. It

helps students observe the plants and provides them with

the supplementary materials in the right place and at the

right time. There is no doubt that the students’ learning

performance is improved’’.

4.2 Performance evaluation of the heuristic algorithms

In this section, simulations are conducted in order to

evaluate the performance of each individual component of

the proposed hyper-heuristic approach. The platform of the

experiments is a personal computer with a Pentium Dual-

Core 2.0 GHz CPU, 2 GB RAM, and 250GB hard disk

with 7200-rpm access speed. The programs were coded in

C# Language. Ten problem instances of various sizes were

randomly generated. The number of learning targets ranged

from 6 to 80, and the number of students was between 10

and 200. The hyper-heuristic algorithm was performed for

30 repetitive runs on each problem instance, and the per-

formance statistics are reported in the following.

4.2.1 Performance of each LLH

Tables 5, 6, 7 and 8 tabulate the performance statistics for

each LLH. The first column indicates the index of the

problem instance. The next four columns correspond to the

mean, standard deviation, minimum, and maximum of the

objective value (Eq. 1) over the 30 repeated runs. As the

CCPLP problem has a capacity constraint, the previous

four statistics are measured for the runs in which the finally

obtained solution is feasible. Hence, the hit ratio of suc-

cessful runs (obtaining a feasible solution) is further

reported in the Hit Ratio column. The last column gives the

mean CPU time in seconds that each independent run

takes.

The performance comparison of the four LLHs is sum-

marized as follows. First, the LLH-A (swap) has the best

performance in terms of producing quality objective value;

the LLH-C (inversion) ranks in the second place followed

by the LLH-D (greedy) and the LLH-B (shift). This is

because successive swap operations can produce any

Table 7 Performance statistics for LLH-C (inversion)

Problem

instance

Performance statistics

Mean SD Min Max Hit ratio

(%)

CPU

time

#1 0.4571 0.0190 0.4180 0.5009 100 0.19

#2 0.4468 0.0130 0.4229 0.4709 100 0.51

#3 0.5415 0.0153 0.5114 0.5710 100 0.47

#4 0.4894 0.0100 0.4649 0.5096 100 1.35

#5 0.5525 0.0079 0.5382 0.5746 100 1.92

#6 0.5830 0.0064 0.5691 0.5944 100 3.39

#7 0.6688 0.0025 0.6639 0.6759 100 10.83

#8 0.7115 0.0020 0.7073 0.7144 80 23.57

#9 N/A N/A N/A N/A 0 49.22

#10 N/A N/A N/A N/A 0 105.45

Table 8 Performance statistics for LLH-D (greedy)

Problem

instance

Performance statistics

Average SD Min Max Hit

ratio

(%)

CPU

time

#1 0.5247 0.0000 0.5247 0.5247 3.33 0.20

#2 N/A N/A N/A N/A 0 0.60

#3 N/A N/A N/A N/A 0 0.54

#4 0.5124 0.0141 0.4982 0.5265 6.67 1.29

#5 N/A N/A N/A N/A 0 1.62

#6 N/A N/A N/A N/A 0 2.90

#7 N/A N/A N/A N/A 0 8.47

#8 N/A N/A N/A N/A 0 20.37

#9 N/A N/A N/A N/A 0 48.37

#10 N/A N/A N/A N/A 0 104.27 Fig. 6 Percentage of the portfolio using less than three LLHs for

resolving problem instance #8
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learning paths; however, the other three LLHs cannot. It is

worth noting that although the four LLHs have different

degrees of performance, they may compensate for each

other. This initiates the authors’ motivation for developing

the hyper-heuristic to build the collaborations of the four

LLHs. Second, for the hit ratio performance of producing

feasible solutions, LLH-A successfully obtains a feasible

solution for all runs on each problem instance, LLH-C can

produce a feasible solution for at least 80 % of the repet-

itive runs on eight out of the ten instances, LLH-B achieves

a hit ratio of at least 96.67 % on six out of the ten

instances, and LLH-D has the lowest hit ratio. Third, the

LLH-D (greedy) does not deal with the satisfaction of the

capacity constraint (thus having the lowest hit ratio), but is

designed for improving the objective value. The LLH-D

has an imperative role in helping the other heuristics

improve their solution quality when they are adopted under

the hyper-heuristic framework, as will be noted. Finally,

the four LLHs cost comparative CPU times on each

problem instance because they all involve just simple

operations.

4.2.2 Performance of the HS method

This section discusses whether the HS method can select

the best portfolio (combination) of the LLHs at every

hyper-heuristic cycle. In the experiment, it was found that

most of the selected portfolios contained no more than two

LLHs, indicating that the successive use of primitive,

though effective, LLH portfolios is more advantageous

than using complicated LLH portfolios. Figure 6 shows the

percentage of the performed portfolio using less than three

LLHs for problem instance #8, where letters A, B, C, and D

represent LLH-A, LLH-B, LLH-C, and LLH-D, respec-

tively. It is seen that the top four mostly used LLH port-

folios which are compositions of A and D. This

phenomenon conforms to the observations from the pre-

vious experiment on the single LLH performance where

LLH-A achieves the highest performance and LLH-D can

collaborate with the other LLHs to improve the solution

quality. It is interesting to note that the percentage of

execution of single A or D is also high because they can

form AD or DA if they are executed in two successive

cycles.

The implications from Fig. 6 are notable. The hyper-

heuristic method provides a flexible framework which

intelligently chooses effective LLH portfolios to achieve

the maximum synergy. Consequently, the practitioners can

focus on the design of the HS and the MA methods rather

than on developing complicated LLHs which require

intensive domain knowledge. The selection performed by

the HS method has a high consensus with the performance

evaluation of the individual LLHs. Moreover, the HS

method can identify highly effective portfolios which may

be overlooked by human experts. For example, LLH-D,

when performed alone, has the lowest hit ratios in solving

the problem instances (see Table 8), so it may be ignored

by a domain expert. However, LLH-D is identified by the

proposed HS method as being able to shorten the learning

path in a greedy fashion and directly improves the objec-

tive value if it works in collaboration with other LLHs. The

proposed HS method intelligently exploits this invisible

clue and increases the probability of identifying the global

optimal learning path.

4.2.3 Performance of the MA method

The proposed MA method adopts the SA to decide whether

to accept a new solution to replace the current trial solu-

tion. The success of the SA depends on the control of the

annealing process which gradually decreases the tempera-

ture and adapts the solution acceptance probability. The

Fig. 7 Objective value obtained by the MA method as the final

temperature of the annealing process decreases

Table 9 Performance statistics for the hyper-heuristic method

Problem

instance

Hyper-heuristic

Mean SD Min Max Hit

ratio

(%)

CPU

time

#1 0.3626 0.0059 0.3477 0.3739 100 0.44

#2 0.3980 0.0105 0.3782 0.4218 100 0.86

#3 0.4108 0.0082 0.3954 0.4256 100 0.83

#4 0.3950 0.0123 0.3782 0.4332 100 1.69

#5 0.3590 0.0037 0.3520 0.3681 100 2.37

#6 0.3685 0.0027 0.3649 0.3778 100 3.74

#7 0.3821 0.0017 0.3787 0.3874 100 12.09

#8 0.4265 0.0020 0.4229 0.4304 100 28.13

#9 0.4358 0.0015 0.4334 0.4392 100 67.27

#10 0.4652 0.0018 0.4621 0.4694 100 111.08
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MA method is thus executed with various settings for the

final temperature of the annealing process. Figure 7 shows

the objective value obtained by the MA method as the final

temperature of the annealing process decreases. It is

observed that less objective value (i.e., higher quality)

solutions can be obtained if the annealing process is con-

ducted until the temperature is sufficiently close to zero. It

is seen that the value of 1.0 E-13 is an appropriate setting

for the last temperature in the annealing process, and the

performance improvement becomes negligible when the

final temperature further decreases.

4.2.4 Overall performance of the hyper-heuristic method

An evaluation of the overall performance of the proposed

hyper-heuristic method, which intelligently takes advan-

tage of the four LLHs by using the HS and the MA

methods, was conducted. Table 9 lists the performance of

the hyper-heuristic which is significantly better than those

obtained by individual LLHs (see Tables 5, 6, 7, 8). It

strongly supports the claim that it is beneficial to employ a

hyper-heuristic approach rather than solve the problem by a

single complicated heuristic. As a visual illustration, Fig. 8

shows the objective values obtained by the compared

methods. It is seen that the hyper-heuristic obtains the least

objective value compared with those obtained by individ-

ual LLHs on all of the test problems. The performance

improvement is due to the fact that the hyper-heuristic

selects and performs the best LLH portfolios at every cycle

and then applies the move acceptance function to create a

search course which effectively explores the solution

space. Moreover, as shown in Fig. 9, the consumed CPU

time for the compared methods increases as the problem

size increases. All of the four LLHs require comparable

computational time to accomplish a complete run. The

hyper-heuristic applying the HS and the MA methods

requires a little extra computational time, which resulted in

the significant performance gains as shown in Fig. 8.

5 Conclusions

Engaging students in observing and learning from real-

world targets has been recognized as being an important

trend in educational settings. However, the constraints in

real-world environments have seldom been discussed when

conducing context-aware u-learning activities in most

previous studies. In this paper, an optimization problem for

determining personalized learning paths in the real world to

maximize students’ learning efficacy is formulated by

taking the relevance between real-world learning targets

and the environmental constraints into account. A hyper-

heuristic algorithm is proposed to find quality solutions to

the problem; moreover, a context-aware u-learning envi-

ronment has been developed for an elementary school

campus to evaluate the proposed approach. From the

interviews of three experienced teachers, it has been found

that the u-learning approach is able to motivate the students

and improve their learning efficacy.

Although the application of the present study is related

to the observation and identification of the plants on a

school campus, the proposed approach can be applied to

other in-field learning activities concerning real-world

target observations, identification, and comparisons, for

example, the ancient objects or artworks in temples or

museums. It can also be applied to the observations of

Fig. 8 Objective values obtained by the hyper-heuristic and the four

individual LLHs

Fig. 9 CPU time consumed by the hyper-heuristic and the four

individual LLHs
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other natural objects, such as the features of rocks and

terrains in different geographical locations and the plants in

ecology parks. In addition, there are additional factors that

can be considered in providing learning guidance in the

future, such as the students’ learning status and learning

styles.

In the meantime, there are certain limitations to the

approach. For example, while applying the u-learning

approach to a new application, the location and available

space of each real-world target, the corresponding QR-code

tag, supplementary materials, and the learning task need to

be defined and prepared. Moreover, the teachers need to

provide the repertory content for determining the relevance

of the learning targets. Therefore, to make this approach

more applicable, it is worth developing effective tools to

assist teachers in designing u-learning activities and pre-

paring those needed materials.
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